If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-338=0
a = 1; b = 2; c = -338;
Δ = b2-4ac
Δ = 22-4·1·(-338)
Δ = 1356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1356}=\sqrt{4*339}=\sqrt{4}*\sqrt{339}=2\sqrt{339}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{339}}{2*1}=\frac{-2-2\sqrt{339}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{339}}{2*1}=\frac{-2+2\sqrt{339}}{2} $
| 6x²-19x+10=0 | | 2(g+1)-8=2 | | 22—5(6v-1)=-63 | | 3x-7=-46 | | -40=-10x+50 | | (m)3m=184 | | -3q-7q=-100 | | 3+1x-8=6 | | 8c+c+3c+12-10=26 | | 2n+10+2n+10+2n+10=180 | | 2(4x-3)=4+3x | | 5k-7+12=10k+12k+3k | | -4r-8=-59 | | -15+x=-36 | | 70=2(6x+5) | | y=76-5 | | 2n+10=180 | | m(3m)=184 | | 5n+34=-2+9n | | 14-4z=34 | | 2=2(t-3)-4 | | 24k=432 | | −5(x−9)=−5 | | 31x-2=59x+2 | | -5(5n-6)=105 | | 16c-19c=18 | | 6=-4/u | | 11z=66 | | (0.66+1.33)+(x=3)= | | 13+y/3=16 | | 12x+11=7x+16 | | 1/2(10x+15)‐3/2=2x+6+3x |